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Abstract

The on–orbit GPS satellite clock signals demonstrate significant periodic fluctuations for periods of
2.003 and 4.006 cycles/day. A timescale algorithm which includes the on–orbit GPS clocks should
account for these periodic variations in order to mitigate their influence on the timescale. This is
accomplished in a Kalman filter by introducing the periodicsas independent states which evolve in a
discrete–time algorithm alongside four other clock dynamic states. However, there is some freedom in
the choice of how these harmonic states are coupled to the other states depending on the application
at hand. A typical model of a clock’s dynamics is a four state clock model, including the phase of the
clock, its first derivative (frequency) and its second derivative (drift), each perturbed by an indepen-
dent random walk; one additional phase state is also included in order to model a pure white phase
noise. Four additional states are joined with the typical clock states in order to accommodate the
periodic processes, where each of the four harmonic states are also perturbed by stochastic noises of
some type (e.g., random walks) in order to account for any random change in the harmonic amplitude
or phase over time.

In general, a Kalman filter will grow in complexity with the number of states and the number of non–
trivial correlations between them. Since the process noisecovariance matrix will have off–diagonal
entries for the discrete model, including those between thetypical clock dynamic states and the har-
monic states, reducing unnecessary correlations can lead to reduced complexity and improved pro-
cessing time for the filter implementation. If the process noise covariance between the harmonic
states and the clock dynamic states are small, then a filter algorithm that neglects these small cross–
correlations (and hence simplifies the state covariance matrix) is preferable and can be exploited to
reduce processing time.

This work investigates the performance of the fully coupledmodel in comparison with the reduced co-
variance model, where performance is measured in terms of both timescale stability, model accuracy,
and processing time. The benefits and costs of coupling the harmonics only to the phase state versus
coupling them fully to the drift and frequency states is alsoinvestigated.

INTRODUCTION

Good filter performance for a timescale is reliant on an accurate model of the clocks’ behaviors. As GPS
clocks have continued to improve with each new generation, so has our ability to measure (or estimate) their
signals remotely using techniques such as geodetic time transfer. Increased global density of GPS tracking
stations, the utilization of geodetic quality receivers that can track multiple satellites on both frequencies, as
well as utilization of integrated Doppler observations have led to the routine comparison of remote clocks
at the centimeter level globally as evidenced, for example,in the products of the International GNSS Ser-
vice. Throughout this work, the term “clock” is meant to encompass all non–dispersive bias–like effects on a
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given clock signal. In the case of satellite clocks, this means not only the contribution from the active atomic
physics package on board the satellite but also any other bias–like effects from other elements in the transmit
chain leading up to transmission of the signal at the antenna. For ground station clocks, this includes not only
the frequency reference used by the GPS receiver but also allother bias–like effects in the GPS receive chain.

Using data from the IGS the authors in[1] determined that the GPS constellation clocks are subject tosig-
nificant harmonic variations at periods ofn× (2.0029± 0.0005) cycles per day forn ∈ {1, 2, 3, 4} with lesser
amplitudes forn = 3 andn = 4, specifically. Any timescale which utilizes the GPS satellite clocks should
therefore compensate the harmonic variations, particularly for n = 1 andn = 2. This paper compares sev-
eral similar approaches to handling these two periodics in the context of Kalman filtering, each with subtle
model differences as well as different impacts on the speed of computation.

In order to closely model the expected configuration of the GPS operational control segment network of
clocks, we assume in this analysis a collection of 41 clocks:15 ground high performance commercial ce-
sium clocks, 24 GPS constellation clocks with performance similar to the Block IIF performances and 2
commercial active masers. The goal is to generate a timescale from these 41 clocks utilizing three different
approaches to modeling the harmonic variations. In each of the three approaches the same timescale con-
straints will be added to the system so that only the particular handling of the harmonic variations differs in
the comparisons.

The first section of this paper will introduce the base clock model that is employed for all of the clocks in
this analysis. A four state model is chosen in order to address an additional white noise process in the clock’s
phase. The clock dynamics are introduced in a continuous version of the model. The discrete model is ob-
tained by standard techniques that can be found in[2]. The variance of the stochastic white noise sequences
is defined as an input parameter, and derivations of key covariance matrices are also presented. The base
clock model is all that is required to analyze the cesium clocks and masers since no other known factors are
significantly important.

Additional states necessary to model the harmonic variations for the GPS clocks are presented in the second
section. Within this section are three different models of the clock periodic states: the first adds the states
to only the phase state without any stochastic correlation between the stochastics driving the harmonics and
the stochastics driving the base model; a second provides for full correlation between the harmonic stochas-
tics and the base model stochastics but results in higher algorithm complexity; and a third model couples
the harmonics to all clock states and stochastically correlates them entirely. The structure of the matrices
involved in the algorithm are derived for each model in this section. A large diagram is also shown to exhibit
how each noise traverses the clock’s states and thereby how each affects the clock signal output.

The modeling constraints used to generate the ensemble is presented in the third section. Also, the standard
Kalman filter process that is used to filter measurements for the ensemble is shown for completeness. Details
of the filter and the matrices that are used in this case are derived. There is also an explanation of the
filter components which contribute most to the computation time of the algorithm. A key element of this
study is to identify the algorithm speed that is sacrificed when greater noise correlations are made. The
fourth section closes the analysis with results of each of these models applied to the filter. A study of the
complexity bestowed upon the filter by each model is presented. A comparison of the clock deviations,
timescale deviations and filter run times allow us to determine which model may best support a timescale
filter for the ensemble involving on–board GPS clocks.

502



43rd Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting

Notational Conventions

Bracketed superscripting/subscripting will always denote quantities pertaining to individual clock members.
For example,x[i]

1 denotes the phase of clocki relative to a perfect clock. When the continuous–time model
is discussed, we will use the variablet to denote the independent “perfect time” measurement. The ma-
jority of this report, however, revolves around a discrete model. We will denote bytk the discrete epoch
of the timescale from a clock common to all the measurements and estimates. Variations in the difference
τ := tk − tk−1 are neglected as insignificant. In cases where the quantity of interest is dependent on onlyτ,
the epoch variabletk will be dropped to simplify notation.

Subscripts exhibited on bold matrix variables (as inAm,n) are used to denote the size of the matrix. For
example,A4,3N would indicate that matrixA has size 4× 3N. If only one index is listed in the subscript,
then the matrix is square. When subscripts appear on matrix variables of normal italic type (as inAm,n),
then the expressionAm,n represents the entry in position (m, n) of matrixA. The matrices0m,n and0n are the
zero matrices of sizesm×n andn×n, respectively. We denote the sizen×n identity matrix by the symbolIn.

BASE CLOCK MODEL

Two–state perfect integrators were first suggested to modelthe error of clocks by Jones and Tryon during
the early 1980s[3]. Phase and frequency were the states used in the two–state model. By 1982, the inclusion
of a linear clock drift term brought about three state clock models, necessary particularly to model the drift
of masers and rubidium clocks[4]. The four state model has since been used to model the behavior of most
clocks. See[5], for example. An additional phase state with its own white noise process is the fourth state
that sets this model apart from the two and three state versions. In this paper, cesium clocks and masers will
be modeled using the four state clock model. The primary focus, however, is the set of GPS constellation
clocks. These will require additional states to handle their periodic variations. Extensions of the model for
the GPS clocks will be discussed in the next section; this section handles only the four state clock model.

Continuous Version

The four states of this model are the clock’s phase, derivative of phase (frequency), second derivative of
phase (drift), and an additional phase state. Independent integrated white noise components (random walks)
are added to each of the deterministic states of drift, frequency and phase. The additional phase state is equal
to the clock’s phase plus an additional non–integrated white noise. A state vectorx and corresponding noise
input vectoru contain the variables of the states and input noises for the clock. These are shown below to
identify the nomenclature for the states and noise components.

x(t) =



x1(t)
x2(t)
x3(t)
x4(t)



Perturbed Phase
Phase
Frequency
Drift

White Phase Noise
Random Walk Phase Noise

Random Walk Frequency Noise
Random Walk Drift Noise



u1(t)
u2(t)
u3(t)
u4(t)


= u(t)

A diagram of the dynamics for these four clock states and the corresponding input white noise sequences is
shown below in Figure 1. In this figure, one can see how the noises are integrated to become random walks
or random runs upon contribution to the output clock signal.
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∫

dt

White Noise

⊕

u3

x4

∫

dt

White Noise

⊕

u2

x3

∫

dt

White Noise

⊕

u1

x2

u4

Noise
White

x1

Figure 1. Model of a clock’s four states and independent input white noises.

This model is analogous to an acceleration model where drift, frequency and phase are the analogs of
acceleration, velocity and displacement. With this similarity drawn, the systems of differential equations
modeling the clock depicted in Figure 1 is clearly

C
dx
dt
= F x(t) + u(t) (1)

wheret is an independent “perfect time” variable and the coefficient matrices are

C =



0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


and F =



1 −1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


.

Each of the noise inputs are white noise sequences which we will assume to have mean zero and variances
defined byE

[
u(t)uT(t′)

]
= S δ0(t − t′) whereS = Diag

[
S1 , S2 , S3 , S4

]
andδ(x) is the standard Dirac

delta function.

Discrete Version

An equivalent discrete model can be developed by first setting a distribution of evenly spaced time epochs
at intervals ofτ; see Figure 2. These epochs are enumerated with the indexk. An implementation of this
model involves estimating the clock states at each of these epochs. One can calculate the state vector at time
epochtk+1 based entirely on the state values at the epochtk and the white noise process by

x(tk+1) = Φk(tk+1)x(tk) +G s(tk) (2)

where the transition matrix that propagates the state fromtk to tk+1 is given by

Φk(tk+1) =



0 1 tk+1 − tk (tk+1 − tk)2/2

1 tk+1 − tk (tk+1 − tk)2/2

1 tk+1 − tk

1



=



0 1 τ τ2/2

1 τ τ2/2

1 τ

1



.

The matrixG is called the process noise pre–multiplier. It serves to addboth the random walk phase noise
and the white phase noise to the additional phase state. Notethat the phase state whose derivative is set to
frequency does not have an additional white noise process. The process noise pre–multiplier and random
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noise inputs to the system, in evolving discretely fromtk to tk+1, are

G : =



1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


and s(tk) : = G−1

∫ tk+1

tk

Φk(ξ)u(ξ) dξ. (3)

From this point forward, we define the notationxk := x(tk) andsk := x(tk) for simplicity. Both of these
conventions will appear later, depending on context.

t0 t1 t2 tk−1 tk tk+1

τ τ

t

Figure 2. Discrete enumerated epochs on a continuous time axis.

From Equation (3) and the assumption of the noise expectation in the continuous model, one can derive

E [ Gsk ] =

∫ tk+1

tk

Φk(ξ)E
[

u(ξ)
]

dξ = 04,1.

SinceG is a constant invertible matrix, the mean of each discrete noise statistic must be 0. Applying the
definition ofsk in Equation (3), the covariance matrix associated with the discrete white noise statistics is

G QkGT =

∫ tk+1

tk

∫ tk+1

tk

Φk(ξ) SΦT
k (η) δ0(ξ − η) dηdξ. (4)

From this, and recalling thatτ = tk+1 − tk, theQk matrix may be explicitly calculated as

Qk =



S1 fh 0 0 0

0 S2τ + S3
τ3

3 + S4
τ5

20 S3
τ2

2 + S4
τ4

8 S4
τ3

6

0 S3
τ2

2 + S4
τ4

8 S3τ + S4
τ3

3 S4
τ2

2

0 S4
τ3

6 S4
τ2

2 S4τ



(5)

where fh is a high frequency cut–off to limit the bandwidth of the white phase variance. The off–diagonal
entries ofQk can be specified either from manufacturer’s specification orfrom Hadamard analysis of the
clock signal[6]. It is worth noting that the epoch numberk is absent from the structure of the matricesΦk,
G andQk. This is a result of the stationary nature of the white noise processes. Often, the epoch number
subscript may be dropped when it is clearly superfluous. See[2] for further details on the development of
the discrete time model.
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GPS CLOCK MODELS

The clocks aboard the GPS constellation satellites exhibitperiodic perturbations in the measurements ob-
served. While the precise source of these effects is not known, their mathematical nature has been identified
as sinusoidal perturbations with periods of 2.003 and 4.006cycles/day [1].

Since there are two periodics that affect a GPS clock, we expand the base model of the last section byadding
four additional states. It is necessary to add two states perperiodic since a sinusoid is uniquely determined
by a phase and an amplitude. Three models will be presented and the only difference between them will
be the method by which these periodic states are coupled and correlated to the clock dynamic states. The
coupling of the periodic variables is described in the diagram of Figure 3. Note that in Model I, the harmon-
ics are added directly to the output phase of the clock to directly simulate the intrusion of the periodic in
the clock signal. Model II injects the oscillating harmonicto both phase states in order to reconcile the two
phase states as equivalent up to one white noise process. Model III couples all the clock dynamic states to
the periodics.

⊕

u4

∫

dt

White Noise

x4

⊕

u3

∫

dt

White Noise

x3

⊕

u2

∫

dt

White Noise

x2
Drift Frequency Phase

⊕

u1

x1

White Noise

Model IModel IIModel III

⊕
∼ ∼

x5 + u5

x6 + u6

x7 + u7

x8 + u8

Two states per harmonic

each with White Noise

Figure 3. Clock model with fixed period harmonics added in oneof three ways.

For GPS clocks, the presence of harmonics requires an expansion of the state and noise vectors. Since there
must be two states per periodic, these vector expand to the following.

x =
[

x1, x2, x3, x4, x5, x6, x7, x8
]
,

u =
[
u1, u2, u3, u4, u5, u6, u7, u8

]
.

With these expanded vectors comes the expanded covariance matrix. As with the base model, this covariance
matrix is equal to a delta function multiplied by the matrix

S = Diag
[
S1 , S2 , S3 , S4 , Sh , Sh , Sh , Sh

]
.

For simplicity, it is assumed that the harmonic states have the same level of noise. In other words,

E
[
u2

5

]
= E

[
u2

6

]
= E

[
u2

7

]
= E

[
u2

8

]
= Sh. (6)

506



43rd Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting

Although the periods of the sinusoids are fixed throughout this paper, the model is designed to accept two
periodic influences of any period. Therefore, define the variablesω1 andω2 to be the frequencies of the
sinusoids mentioned in cycles/day. For this paper, it will be the case thatω1 = 2.003 andω2 = 4.006.
Furthermore, define the dimensionless versions of these frequencies

ν1 = 2πω1 and ν2 = 2πω2.

Model I

The first model entails the simplest computational introduction of the fixed periodic influences. We simply
add two fixed period harmonic oscillations to the phase statex1 and weight them with the four harmonic
state variables. Hence, the deterministic component of thephase state takes the form

x1 = x2 + τx3 +
τ2

2 x4 + x5 cos(ν1tk) + x6 sin(ν1tk) + x7 cos(ν2tk) + x8 sin(ν2tk).

Note that the harmonic variables are used as weights on the fixed period sinusoidal functions. This allows
the filter to adjust the weights such that the amplitude and phase of the two harmonics are attained to corre-
spond to those realized in the GPS clock measurements.

Since the harmonic effects are assumed to influence the clock and be completely unaffected by the clock
states, we presume a total decorrelation of the harmonics and clock states. The continuous clock model for
this case will therefore involve a periodic forcing as a delta function at each epoch. The differential model
will be the same as in Equation (1), namely

[
C 04

04 I4

]
dx
dt
=

[
F 04

04 I4

]
x(t) + u(t) (7)

where the coefficient matrices are simply expansions of those presented in the base model. Upon integration
(or use of an inverse Laplace Transform), one obtains a familiar transition matrix. The sinusoidal entries
in the top row are added to the transition matrix to incorporate the harmonics into thex1 phase state. The
discrete model therefore has the form

xk+1 =
(
ΦI +Mk

)
xk +GIsk

where

ΦI =

[
Φ 04

04 I4

]
and GI =

[
G 04

04 I4

]
.

Also,

Mk =

[
01,4 cos(ν1tk) sin(ν1tk) cos(ν2tk) sin(ν2tk)
07,4 07,1 07,1 07,1 07,1

]
.

In this simplified model, we assume no correlation between the harmonic states and the clock’s phase.
The intent of adding the harmonics in this fashion is to account for the superimposed undulations in the
phase via fairly well–determined periodic influence. The reason for adding the periodics as states with
stochastic processes is to give the filter stochastic flexibility to update the states should there be a change in
the periodics. A purely deterministic periodic would be unaccommodating to any measurement changes or
other such numerical inconsistencies. We therefore take the covariances of the harmonic states to be zero
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and obtain the error covariance matrix in the same manner as in Equation (4):

E
[

GI sksT
k GT

I

]
=

∫ tk+1

tk

ΦIS Φ
T
I dτ = GI

[
Qk 04

04 τShI4

]
GT

I .

Model II

For Model II, the periodic states are treated as oscillatingvariables themselves, rather than as weights to
fixed trigonometric functions. The two most crucial differences between this and Model I are: the peri-
odics are added into both phase states; and, the covariancesbetween the clock and periodic states are not
neglected. By allowing this stochastic connection, the error covariance matrix becomes inherently more
complicated and therefore increases the computational complexity of the Kalman update routine.

The continuous model is again of the form in Equation (1). Thecoefficient matrix, however, differs substan-
tially. For Model II, we have

[
C 04

04 I4

]
dx
dt
=



1 −1 0 0
0 0 1 0 1 0 1 0
0 0 0 1
0 0 0 0

0 ν1

−ν1 0
0 ν2

−ν2 0



x(t) + u(t). (8)

The coefficient matrix to the vector statex clearly shows the periodic states as oscillating variables; note the
submatrices in the lower quadrant. These periodics are added to the phase state in the second row and then,
by extension, are incorporated in the second phase state. Since the harmonics are integrated into the system,
rather than added at each epoch, there is no epoch dependentMk matrix for this model. The pre–process
noise multiplier is unchanged for this model since the incorporation of noise to the second phase state is the
same. Hence,GII = GI. The discrete propagation model will be

xk+1 = ΦII xk +GII sk

where

ΦII =



0 1 τ τ2/2 sin(ν1τ)
ν1

1−cos(ν1τ)
ν1

sin(ν2τ)
ν2

1−cos(ν2τ)
ν2

1 τ τ2/2 sin(ν1τ)
ν1

1−cos(ν1τ)
ν1

sin(ν2τ)
ν2

1−cos(ν2τ)
ν2

1 τ

1
cos(ν1τ) sin(ν1τ)
− sin(ν1τ) cos(ν1τ)

cos(ν2τ) sin(ν2τ)
− sin(ν2τ) cos(ν2τ)



.

As in the previous model, the covariance matrix is obtained by multiple integration ofΦ andS with a delta
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function. Equation (4) can be used to obtainE
[

GII sk sT
k GT

II

]
= GII

(
QL +QT

L

)
GT

II where

QL =



S1
fh
2 0 0 0 0 0 0 0

0 S2
τ
2 + S3

τ3

6 + S4
τ5

40 + ShΩ 0 0 0 0 0 0

0 S3
τ2

2 + S4
τ4

8 S3
τ
2 + S4

τ3

6 0 0 0 0 0

0 S4
τ3

6 S4
τ2

2 S4
τ
2 0 0 0 0

0 −Sh
cos(ν1τ)
ν21

0 0 Sh
τ
2 0 0 0

0 Sh
sin(ν1τ)−ν1τ

ν21
0 0 0 Sh

τ
2 0 0

0 −Sh
cos(ν2τ)
ν22

0 0 0 0 Sh
τ
2 0

0 Sh
sin(ν2τ)−ν2τ

ν22
0 0 0 0 0 Sh

τ
2



and

Ω =
ν1τ − sin(ν1τ)

ν31

+
ν2τ − sin(ν2τ)

ν32

.

Model III

In the third and final model, the harmonic states are again treated as oscillating variables. This model is
distinct from Model II since the harmonic variables are coupled directly to the drift state rather than only
the phase state. From the diagram in Figure 3, one can see thatthe harmonic states (along with their white
noise components) will be integrated three times. The impact of these states on the phase will therefore be
significantly more complex. This is expected given that successive integrations from the drift state yield

x1(t) = u1(t) +

∫ t [
u2(s) +

∫ s (
u3(ξ) +

∫ ξ (
u4(η) + x5(η) + x7(η)

)
dη
)
dξ

]
ds.

The continuous differential model for the entire system is again of the form in Equation (1). As in Models I
and II, we haveCIII = CI andGIII = GI. For Model III, we have the system of differential equations

CIII
dx
dt
=



1 −1 0 0
0 0 1 0
0 0 0 1
0 0 0 0 1 0 1 0

0 ν1

−ν1 0
0 ν2

−ν2 0



x(t) +GIII u(t). (9)

Notice that the periodic variables are added to the drift state. Since the drift integrates to the frequency
which in turn integrates to phase, the periodic effect is propagated through the entirety of the clock states.
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The discrete time model is again of the form

xk+1 = ΦIII xk +GIII sk

where the transition matrix is now

ΦIII =



0 1 τ τ2/2 ν1τ−sin(ν1τ)
ν31

ν21τ
2−2+2 cos(ν1τ)

2ν31

ν1τ−sin(ν2τ)
ν32

ν22τ
2−2+2 cos(ν2τ)

2ν32

1 τ τ2/2 ν1τ−sin(ν1τ)
ν31

ν21τ
2−2+2 cos(ν1τ)

ν31

ν1τ−sin(ν2τ)
ν32

ν22τ
2−2+2 cos(ν2τ)

2ν32

1 τ
1−cos(ν1τ)
ν21

ν1τ−sin(ν1τ)
ν21

1−cos(ν2τ)
ν22

ν2τ−sin(ν2τ)
ν22

1 sin(ν1τ)
ν1

1−cos(ν1τ)
ν1

sin(ν2τ)
ν2

1−cos(ν2τ)
ν2

cos(ν1τ) sin(ν1τ)

− sin(ν1τ) cos(ν1τ)

cos(ν2τ) sin(ν2τ)

− sin(ν2τ) cos(ν2τ)



.

Note thatΦIII has far lower sparsity thanΦI . The covariance matrix will not be shown here since some
entries of that matrix contain hundreds of terms. One may computeQk using Equation (4), but it is only
necessary for the reader to be aware thatQk is less sparse and contains substantially more complicatedterms.

CLOCK ENSEMBLE AND KALMAN FILTER PROCESS

An important concern in this report is the number of calculations that must be carried out in order to attain
the state vectorxk from the state vector at the previous time step,xk−1. Given that the actual state vector is
unknown, a process that involves updating estimates of the clock is needed. We assume some initial estimate
for the state vector,̂x0. Then, using the transition matrixΦ, we update the state vector to estimates at the next
time step, namelŷx1. This propagation follows the base discrete model of Equation (2) without the noise
term. Since the noise is random, it can be neither predicted nor applied to the deterministic propagation. As
shown in Figure 4, the filter produces a series of clock state estimates, almost surely not equal to the actual
clock states. Even the initial condition̂x0 is a guess that is not equal tox0.

t

Actual
State

(unknown)

Estimated
State

. . .Φx̂0

x0

Φx̂1

x1

Φx̂2

x2

Figure 4. Actual versus estimated clock states.
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In order to compare the state of the physical clock to the state estimates, there must be a measurement of
the clock’s phase. Since a clock may only be observed with respect to another clock, there will be a need
for more than one single clock before the notion of measurements and updates can be considered. Before
continuing on this front, a model for an ensemble of clocks ispresented.

Ensemble of Clocks

Consider a set ofN clocks each of which has four clock states as well as four independent noise inputs.
Thus, for clocki, we have the four statesx[i]

1 , x
[i]
2 , x

[i]
3 and x[i]

4 as well as the noise inputsu[i]
1 , u

[i]
2 , u

[i]
3 and

u[i]
4 . A GPS clock will also have the additional four periodic states and their associated noise processes. The

two phase states of all the clocks are assembled together followed by the frequency states and then the drift
states into a single large state vector. The same organization applies to the noise input vector and so one has,

x =
[

x[1]
1 , x

[2]
1 , · · · , x

[N]
1 , x[1]

2 , x
[2]
2 , · · · , x

[N]
2 , · · · , · · · , x[1]

8 , x
[2]
8 , · · · , x

[N]
8

]T

and

u =
[
u[1]

1 , u
[2]
1 , · · · , u

[N]
1 , u[1]

2 , u
[2]
2 , · · · , u

[N]
2 , · · · , · · · , u[1]

8 , u
[2]
8 , · · · , u

[N]
8

]T

For simplicity, assume all clocks have 8 states where masersand cesium clocks have the periodic states
“turned off” by setting them to zero. The system transition matrix is a size 8N square matrix and is obtained
by the Kronecker product of the base transition matrixΦα with the sizeN identity. The discrete model for
the ensemble therefore becomes

xk+1 =
(
Φα ⊗ IN + 1I(α) Mk ⊗ IN

)
xk +

(
Gα ⊗ IN

)
sk (10)

whereα ∈ {I, II , III } is the model number and1I(α) is the indicator function that returns 1 ifα = I and 0
otherwise. One can expand the matrices defined here to revealthe structure of the transition matrix and
process noise pre–multiplier for an ensemble of clocks.

Each clock will have its own independent collection of zero–mean input noises,u[i]
1 , · · ·u

[i]
8 , where each

of these noises corresponds to the initial definitions ofu1, · · · , u8, respectively. We may then construct a
continuous version of the associated covariance matrix

E
[

u(t) uT(t′)
]
= Diag

[
S[1]

1 , S
[2]
1 , · · · , S

[N]
1 , · · · , · · · ,S

[1]
8 , S

[2]
8 , · · · , S

[N]
8

]
δ0(t − t′)

where we define the matrix of spectral densities to beS, as usual. The discrete version of the covariance
matrix for the ensemble case is obtained as in Equation (4). In particular, one can use

[
(G ⊗ IN) Q (G ⊗ IN)T]

i, j =

∫ tk+1

tk


8N∑

n=1

[
Φα(ξ) ⊗ IN

]
i,n
[
S
]
n,n
[
Φα(ξ) ⊗ IN

]
j,n

 dξ,

to obtainQ. Note that sinceΦα(ξ) ⊗ IN is quite sparse, many elements ofQ will be zero.
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Kalman Filter Estimation Process

With the model for a clock ensemble complete, it remains to detail the manner by which measurements are
treated. For an ensemble ofN clocks, we fix clock #N as the reference. Hence, all clock phase measurements
are observed with respect to clock #N. It is these measurements which contribute to the Kalman Filter and
update the propagated estimates of the state vector. In order to build an appropriate filter, we must relate the
measurements to the state vector. Define the vector

z(tk) =
[
z[1](tk) , z

[2](tk) , z
[3](tk) , · · · , z

[N−1](tk)
]

to be the set of measurements at timetk wherez[i](tk) = x[i]
1 (tk) − x[N]

1 (tk) is the observed phase of clocki
with respect to the reference clockN. We may then relatexk andzk by the equation

z(tk) −H x(tk) = 0(N−1),1 (11)

where the observation matrix is

H =



1 0 0 · · · 0 −1 01,7N

0 1 0 · · · 0 −1 01,7N

0 0 1 · · · 0 −1 01,7N
...
...
...
. . .

...
...

...

0 0 0 · · · 1 −1 01,7N


(N−1),8N

.

Since the state estimates of the clocks are not equal to the true state values, we will encounter the observation
equation in the form

z(tk) −H x̂(tk) = v(tk) (12)

wherev is the vector of clock residuals. See Figure 5 for a diagram ofthe Kalman propagation and mea-
surement update routine at epochtk.

With the discrete plant of Equation (10) and observation Equation (12) specified, a Kalman filter may now
be implemented recursively. These standard equations are included here for completeness[7]. We are
interested in propagating estimates of the combined state and its error covariance from time epochtk−1 to tk.
Assume that state estimates and error covariance are given at tk−1 respectively aŝx(tk−1) andP(tk−1). An a
priori estimate of the state vector can be obtained by

x̂(t−k ) = Φx̂(tk−1) (13)

wheret−k is used to indicate thea priori nature of this estimate;̂x(t−k ) is prior in the sense that it predictŝx(tk)
without any input of the measurementz(tk). The error in thea priori state vector is defined as

e(t−k ) = x(tk) − x̂(t−k )

which has the associateda priori error covariance matrixP(t−k ) = E
[

e(t−k )eT(t−k )
]
. The a priori error

covariance matrix is predicted fromP(tk−1) by

P(t−k ) = ΦP(tk−1)ΦT +GQ(tk−1)GT . (14)

Thea posterioriestimates are attained by including measurement data. The measurements attk are arranged
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into a vector along with an accompanying observation matrixof Equation (12). The Kalman gain, state
vector and covariance matrix updates are found in the usual way:

K(tk) = P(t−k )HT
(
HP(t−k )HT + R

)−1
; (15)

x̂(tk) = x̂(t−k ) +K
(
z(tk) −Hx̂(t−k )

)
; (16)

P(tk) = P(t−k ) −KHP(t−k ). (17)

Thea posteriorerror covariance can be calculated as shown in Equation (17)but is initially defined as

P(tk) = E
[

e(tk) eT(tk)
]
,

where the vector of errors is
e(tk) = x(tk) − x̂(tk).

The Kalman filter that is employed in this study contains other clock statistic evaluations such as down–
weighting, spectral density adaptation, ensemble membership control (based on steady state of clocks),
phase break and frequency break detection. These effects are mostly switched off for the tests presented in
this paper. The details surrounding these other elements are eliminated here since they are not changed from
one model to the next and therefore have little bearing on theGPS model comparison.

Clock #1

z[1](tk)

Clock #2

z[2](tk)

Clock #3

z[3](tk)

Clock #4

z[4](tk)

Clock #5

z[5](tk)

Clock #6

z[6](tk)

Clock #7

z[7](tk)

Clock measurements at epochtk

Clock #8

Reference clock

Clocks 1 – 7 are
measured with

respect to clock 8.

x̂(tk−1) x̂(t−k ) x̂(tk) x̂(t−k+1)Eqn (13)

Propagation
Eqn (16)

Kalman Update
Eqn (13)

Propagation
· · ·

Figure 5. Measurements from an eight clock ensemble being used to update the a priori
estimates of the statêx(t−k ), at epochtk to the a posteriori estimateŝx(tk).
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FILTER PERFORMANCE AND RESULTS

In this section, we present results of the filter when equipped with each of the three models discussed ear-
lier. The statistics arising from the estimated clock phaseare compared with the statistics of the true clock
phase to assess the validity of each model and determine the extent to which each can apply to the filter
and generate an accurate timescale. In addition, an analysis of the computation time is presented. Loss of
algorithm speed is one concern when using a more complex, yetprecise model. Ultimately, a comparison
of the accuracy and speed are made to determine the trade–off in selecting a particular modeling approach
for the GPS clocks and their periodics.

Computational Complexity

The state and covariance propagation, which take place in Equations (13) and (14), are of primary interest in
this report. It is these two computations that involve the transition and noise covariance matrices and hence
where the complexity of the model is most relevant. The update step of Equations (15) (16) and (17) are
not as relevant since they are not directly dependent on the different models presented earlier. These update
equations show how the observation matrixH (of constant sparsity) dominates the matrix products.

We can determine the complexity based roughly on the number of clocks with harmonicsNh and the num-
ber of clocks without harmonicsNw. The number of clocks and presence of additional states are the main
factors affecting the size and complexity ofΦ andQ. Clocks without harmonics will have entries of zero in
the right hand half of the transition matrix. This is important to note because a matrix product can be done
faster when the trivial computations are neglected.

Our filter algorithm employs a UD–factorization of the errorcovariance matrixP in order to help speed the
algorithm and maintain a symmetric structure inP. The routine used to propagate and update the estimates
is due to Catherine Thornton and can be found in[8]. This routine actually updates theU andD factors so
that

U(tk)D(tk)UT(tk) = U(tk−1)D(tk−1)UT(tk−1)ΦT +GQ(tk−1)GT .

The formulas in Table 1 show (roughly) the number of numerical products that must be made in order to
propagate the state and covariance in the Kalman Filter. Note that the number needed is more than twice as
great for Model III versus Model I.

Table 1. Comparison of calculations required at the propagation step.

Model Number of Calculations Nh = 24 and Nw = 17
Number Φx̂ ΦU Total Ratio versus Model I

I 15Nh + 7Nw 368N2
h + 316NwNh + 60N2

w 296,651 1.00

II 19Nh + 7Nw 600N2
h + 524NwNh + 108N2

w 492,677 1.66

III 27Nh + 7Nw 952N2
h + 796NwNh + 164N2

w 766,475 2.58

NB: Formulas are approximate to simplify exposition.
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Timescale Statistics and Filter Tests

The following statistics are based on estimates of the clocks and associated timescales from our filter. We
present both the computation time and the variance statistics of the timescales for each of the three models.
Input parameters for the spectral densities and GPS clock periodics are shown below in Table 2.

These input parameters are needed to generate a data set for the 41 clocks. Each clock is simulated for a
period of 100 days with discrete time epochs spaced atτ = 300 seconds (5 minutes). The simulations pro-
duce true states for all the clocksx(tk) and generate measurementsz(tk) according to Equation (11). These
measurements are passed to the filter three times (each pass with a different GPS clock model) for testing.

Table 2. Model parameters assumed for various clock types.

Clock Class Cesium GPS III USNO Maser AMC Maser
Clock Numbers 1 – 15 16 – 39 40 41*
Spectral Densities

S1 (sec2) 1.00× 10−26 1.00× 10−26 1.00× 10−26 1.00× 10−26

S2 (sec2/sec) 7.23× 10−23 4.90× 10−23 1.00× 10−24 2.25× 10−24

S3 (sec2/sec3) 1.00× 10−38 1.00× 10−38 1.00× 10−38 1.00× 10−38

S4 (sec2/sec5) 1.00× 10−50 1.00× 10−48 1.00× 10−50 1.00× 10−50

Periodic Frequencies
ω1 (cycles/day) ——– 2.003 ——– ——–
ω2 (cycles/day) ——– 4.006 ——– ——–

Periodic Amplitude and Phase
A1 (nsec) ——– 0.700 ——– ——–
A2 (nsec) ——– 0.700 ——– ——–
φ1 (radians) ——– 0 ——– ——–
φ2 (radians) ——– 0 ——– ——–

*AMC Maser (clock #41) is the reference clock.

The filter processes the measurements using the same spectral density values as defined in Table 2. Estimates
of the clock stateŝx(tk) are calculated at each time epoch. As the filter processes the batch of measurements,
it computes an ensemble clock (weighted average of the 41 clocks being processed). This ensemble clock is
the timescale and its estimates along withx̂(tk) are used to calculate Hadamard deviations. The Hadamard
deviation of clock #n is defined by

σ̂
[n]
α (τ) =

NT−1∑

k=1

x̂[n]
1 (tk+1) − 2̂x[n]

2 (tk) + x̂[n]
1 (tk−1)

6 (Nk − 2)

whereNT is the total number of epochs for the period of 100 days withτ as the nominal sampling interval
[9]. Here,α ∈ {I, II , III } is the model number from which the estimates have been obtained.

In order to simplify the presentation of results and also focus on the filter’s performance with respect to the
different clock types, Hadamard deviations are averaged over each class of clock. For the ground cesium
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clocks, GPS clocks and masers, we compute the average statistics

σ̂C
α (τ) =

1
15

15∑

n=1

σ̂
[n]
α (τ) , σ̂G

α (τ) =
1
24

39∑

n=16

σ̂
[n]
α (τ) , σ̂M

α (τ) =
1
2

41∑

n=40

σ̂
[n]
α (τ)

respectively. The plots of the deviations are smoothed by these averages since some of the random noise
generation is averaged. In Figure 6, the average Hadamard deviation for the different clock types is plotted
for the clock estimates of Model I. Note that the deviation ofthe timescale is also plotted.
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Figure 6. Hadamard deviation plot of clock estimates for Model I.

Recall that the periodic states of Model I were roughly constant weights of the deterministic functions
cos(2πωt) and sin(2πωt). This differs substantially from the Model II version where the periodic states
were sinusoidal states themselves and then superimposed onthe phase states of the clock. Despite this
difference, the filter extracts similar deviation statistics when using either of these models. Figure 7 shows
the difference between the Hadamard deviation plots of Models I and II. Note these differences are less in
magnitude in comparison to the plotted timescale of Model I.The cause of the sinusoidal difference is likely
the decorrelation (Model I) versus correlation (Model II) of the periodic and clock states.
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Figure 7. Differences between the Hadmard deviations of the Model I and Model II
estimates of each clock type. These are plotted along side the Hadamard deviation of
Timescale I showing that all Model differences are below the timescale performance.
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In Figure 8, the deviations of all three timescales are plotted. The timescales resulting from the different
models are remarkably similar. It is important to note, however, that the Model III timescale is based
on predicted clock values. The actual clock estimates for Model III yield a poorer performing timescale.
Extensive experimentation with the third model has suggested that even small amounts of noise at the drift
level can amplify upon integration and have great effects on the clock phase estimates. Such is likely the
case in Model III since the periodic states are integrated from the level of drift. There are hypothesis for this
behavior, but these inaccuracies are not an issue or a central problem here. The difference in the deviation
of the timescale from Model I to the true output of Model III issufficiently low to suggest that Models I and
II are able to produce reasonably accurate timescales.
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Figure 8. Comparison of timescales for Models I, II (estimates) and III (predicted).

In order to compare the models, we measure the absolute difference between the averaged Hadamard devi-
ations of the estimates and true clock values. An average of these differences overτ then gives a measure
of the model’s performance for each clock class. Define the average difference between the Hadamard
deviation of the model’s estimate and true states to be

∆C
α =

1
|T |

∑

τ∈T

∣∣∣ σ̂C
α (τ) − σC(τ)

∣∣∣

whereT is the set of epochs over which the filter was run. Table 3 contains numerical results of this mea-
sure. Note that the average difference of the deviations are relatively best for Model II while Model III
performs poorest. This is consistent with the analysis of the timescales earlier. In Figure 8, one can note
that the Model I timescale contains greater influence from the periodic states. The Model II timescale has
less variation by comparison. This may advocate for correlating the periodic states to the clock phase, but
not fully correlating and coupling the entire clock.

In Table 3, results of the filter speed are also presented. Thevariablepα is the computation time in seconds
per epoch when modelα is employed. The effects of the propagation step are evident by the ratio of time
needed with respect to Model I. The ratios compare well with the ratios of Table 1. They are expectedly less
pronounced in Table 3 since an entire epoch of computations includes calculations outside of the propagation
step where the models’ differences are less relevant to computation time.
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Table 3. Model comparisons. Left side: Average difference between true and estimated
clock statistics over the full range ofτ. Right side: Comparison of algorithm speed.

Model Deviation Comparisons Speed Comparisons
α ∆C

α ∆G
α ∆M

α pα pα/pI

I 2.86× 10−16 4.70× 10−16 1.33× 10−15 0.0722 sec 1.0000

II 3.34× 10−16 3.05× 10−16 1.12× 10−15 0.0790 sec 1.0943

III 1.15× 10−15 8.29× 10−16 3.87× 10−15 0.1584 sec 2.1932

CONCLUSIONS

Simplified GPS clock models that partially decorrelate the harmonic states from the clock states do not
severely compromise the accuracy of the filter or performance of the timescale. These results have demon-
strated, however, that simpler models can decrease the computation complexity and hence processing time
of the filter algorithm.

The model which fully couples the harmonics states to the clock states is highly complex with several noise
components that are added to the drift state. Since the driftis integrated twice before affecting the clock
phase, the periodic states and their corresponding noises profoundly disturb the model’s phase output. Such
complications are unnecessary for accuracy and actually hinder accurate filtering of the clock phase.

Although there are considerable speed improvements for thedecorrelated model, the second model seems to
offer a reasonably fast alternative. The primary difference with Model II is that the phase states are stochas-
tically correlated to the periodic states. There were noticeable accuracy improvements for this filter without
too much additional computational complexity. It may be beneficial to consider such a model or a variant as
a reasonable trade–off between complexity and accuracy.
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